Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
International journal of molecular sciences ; 24(5), 2023.
Article in English | EuropePMC | ID: covidwho-2269621

ABSTRACT

SARS-CoV-2 infection causes a considerable inflammatory response coupled with impaired platelet reactivity, which can lead to platelet disorders recognized as negative prognostic factors in COVID-19 patients. The virus may cause thrombocytopenia or thrombocytosis during the different disease stages by destroying or activating platelets and influencing platelet production. While it is known that several viruses can impair megakaryopoiesis by generating an improper production and activation of platelets, the potential involvement of SARS-CoV-2 in affecting megakaryopoiesis is poorly understood. To this purpose, we explored, in vitro, the impact of SARS-CoV-2 stimulation in the MEG-01 cell line, a human megakaryoblastic leukemia cell line, considering its spontaneous capacity of releasing platelet-like particles (PLPs). We interrogated the effect of heat-inactivated SARS-CoV-2 lysate in the release of PLPs and activation from MEG-01, the signaling pathway influenced by SARS-CoV-2, and the functional effect on macrophagic skewing. The results highlight the potential influence of SARS-CoV-2 in the early stages of megakaryopoiesis by enhancing the production and activation of platelets, very likely due to the impairment of STATs signaling and AMPK activity. Overall, these findings provide new insight into the role of SARS-CoV-2 in affecting megakaryocyte–platelet compartment, possibly unlocking another avenue by which SARS-CoV-2 moves.

2.
Int J Mol Sci ; 24(5)2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2269622

ABSTRACT

SARS-CoV-2 infection causes a considerable inflammatory response coupled with impaired platelet reactivity, which can lead to platelet disorders recognized as negative prognostic factors in COVID-19 patients. The virus may cause thrombocytopenia or thrombocytosis during the different disease stages by destroying or activating platelets and influencing platelet production. While it is known that several viruses can impair megakaryopoiesis by generating an improper production and activation of platelets, the potential involvement of SARS-CoV-2 in affecting megakaryopoiesis is poorly understood. To this purpose, we explored, in vitro, the impact of SARS-CoV-2 stimulation in the MEG-01 cell line, a human megakaryoblastic leukemia cell line, considering its spontaneous capacity of releasing platelet-like particles (PLPs). We interrogated the effect of heat-inactivated SARS-CoV-2 lysate in the release of PLPs and activation from MEG-01, the signaling pathway influenced by SARS-CoV-2, and the functional effect on macrophagic skewing. The results highlight the potential influence of SARS-CoV-2 in the early stages of megakaryopoiesis by enhancing the production and activation of platelets, very likely due to the impairment of STATs signaling and AMPK activity. Overall, these findings provide new insight into the role of SARS-CoV-2 in affecting megakaryocyte-platelet compartment, possibly unlocking another avenue by which SARS-CoV-2 moves.


Subject(s)
Blood Platelets , COVID-19 , Humans , Blood Platelets/metabolism , SARS-CoV-2 , COVID-19/metabolism , Megakaryocytes/metabolism , Cell Line
3.
Int J Environ Res Public Health ; 20(3)2023 02 03.
Article in English | MEDLINE | ID: covidwho-2225189

ABSTRACT

The risk of microbial air contamination in a dental setting, especially during aerosol-generating dental procedures (AGDPs), has long been recognized, becoming even more relevant during the COVID-19 pandemic. However, individual pathogens were rarely studied, and microbial loads were measured heterogeneously, often using low-sensitivity methods. Therefore, the present study aimed to assess microbial air contamination in the dental environment, identify the microorganisms involved, and determine their count by active air sampling at the beginning (T0), during (T1), and at the end (T2) of ultrasonic scaling in systemically and periodontally healthy subjects. Air microbial contamination was detected at T0 in all samples, regardless of whether the sample was collected from patients treated first or later; predominantly Gram-positive bacteria, including Staphylococcus and Bacillus spp. and a minority of fungi, were identified. The number of bacterial colonies at T1 was higher, although the species found were similar to that found during the T0 sampling, whereby Gram-positive bacteria, mainly Streptococcus spp., were identified. Air samples collected at T2 showed a decrease in bacterial load compared to the previous sampling. Further research should investigate the levels and patterns of the microbial contamination of air, people, and the environment in dental settings via ultrasonic scaling and other AGDPs and identify the microorganisms involved to perform the procedure- and patient-related risk assessment and provide appropriate recommendations for aerosol infection control.


Subject(s)
COVID-19 , Ultrasonics , Humans , Healthy Volunteers , Pandemics , Respiratory Aerosols and Droplets , Air Microbiology , Colony Count, Microbial
4.
Antiviral Res ; 211: 105546, 2023 03.
Article in English | MEDLINE | ID: covidwho-2176315

ABSTRACT

The early steps of viral infection involve protein complexes and structural lipid rearrangements which characterize the peculiar strategies of each virus to invade permissive host cells. Members of the human immune-related interferon-induced transmembrane (IFITM) protein family have been described as inhibitors of the entry of a broad range of viruses into the host cells. Recently, it has been shown that SARS-CoV-2 is able to hijack IFITM2 for efficient infection. Here, we report the characterization of a newly generated specific anti-IFITM2 mAb able to impair Spike-mediated internalization of SARS-CoV-2 in host cells and, consequently, to reduce the SARS-CoV-2 cytopathic effects and syncytia formation. Furthermore, the anti-IFITM2 mAb reduced HSVs- and RSV-dependent cytopathic effects, suggesting that the IFITM2-mediated mechanism of host cell invasion might be shared with other viruses besides SARS-CoV-2. These results show the specific role of IFITM2 in mediating viral entry into the host cell and its candidacy as a cell target for antiviral therapeutic strategies.


Subject(s)
COVID-19 , Virus Internalization , Humans , SARS-CoV-2/metabolism , Antigens, Differentiation/metabolism , Antibodies, Monoclonal , Spike Glycoprotein, Coronavirus/metabolism , Membrane Fusion , Membrane Proteins
5.
J Clin Endocrinol Metab ; 108(7): e474-e479, 2023 Jun 16.
Article in English | MEDLINE | ID: covidwho-2196659

ABSTRACT

CONTEXT: Poor glucose control has been associated with increased mortality in COVID-19 patients with type 1 diabetes (T1D). OBJECTIVE: This work aimed to assess the effect of prevaccination glucose control on antibody response to the SARS-CoV-2 vaccine BNT162b2 in T1D. METHODS: We studied 26 patients with T1D scheduled to receive 2 doses, 21 days apart, of BNT162b2, followed prospectively for 6 months with regular evaluation of SARS-CoV-2 antibodies and glucose control. Immunoglobulin G (IgG) to spike glycoprotein were assessed by enzyme-linked immunosorbent assay, and serum neutralization by a live SARS-CoV-2 assay (Vero E6 cells system). Glycated hemoglobin A1c (HbA1c) and continuous glucose monitoring (CGM), including time in range (TIR) and above range (TAR), were collected. The primary exposure and outcome measures were prevaccination glucose control, and antibody response after vaccination, respectively. RESULTS: Prevaccination HbA1c was unrelated to postvaccine spike IgG (r = -0.33; P = .14). Of note, the CGM profile collected during the 2 weeks preceding BNT162b2 administration correlated with postvaccine IgG response (TIR: r = 0.75; P = .02; TAR: r = -0.81; P = .008). Patients meeting the recommended prevaccination glucose targets of TIR (≥ 70%) and TAR (≤ 25%) developed stronger neutralizing antibody titers (P < .0001 and P = .008, respectively), regardless of HbA1c. Glucose control along the study time frame was also associated with IgG response during follow-up (TIR: r = 0.93; P < .0001; TAR: r = -0.84; P < .0001). CONCLUSION: In T1D, glucose profile during the 2 weeks preceding vaccination is associated with stronger spike antibody binding and neutralization, highlighting a role for well-controlled blood glucose in vaccination efficacy.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Humans , COVID-19 Vaccines , Glucose , BNT162 Vaccine , Blood Glucose , Antibody Formation , Blood Glucose Self-Monitoring , COVID-19/prevention & control , Glycated Hemoglobin , SARS-CoV-2 , Immunoglobulin G , Antibodies, Neutralizing , Antibodies, Viral
6.
Expert Opin Drug Discov ; 17(12): 1299-1311, 2022 12.
Article in English | MEDLINE | ID: covidwho-2160709

ABSTRACT

INTRODUCTION: Molnupiravir (MOV) is a broad-spectrum oral antiviral agent approved for the treatment of COVID-19. The results from in vitro and in vivo studies suggested MOV activity against many RNA viruses such as influenza virus and some alphaviruses agents of epidemic encephalitis. MOV is a prodrug metabolized into the ribonucleoside analog ß-D-N4-hydroxycytidine. It is incorporated into the viral RNA chain causing mutations impairing coding activity of the virus, thereby inhibiting viral replication. AREAS COVERED: This review analyzes the in vitro and in vivo studies that have highlighted the efficacy of MOV and the main pre-authorization randomized controlled trials evaluating its safety, tolerability, and pharmacokinetics, as well as its antiviral efficacy against SARS-COV-2 infection. EXPERT OPINION: MOV is an antiviral agent with an excellent tolerability profile with few drug-drug interactions. Treatment of mild-to-moderate COVID-19 can benefit from MOV administration in the precocious phases of the disease, prior to the trigger of an aberrant immune response responsible for the parenchymal damage to pulmonary and extrapulmonary tissues. However, its suspected mutagenic effect can be a factor limiting its use at least in selected populations and studies on its teratogen effects should be planned before it is authorized for use in the pediatric population or in pregnant women.


Subject(s)
COVID-19 , Child , Female , Humans , Pregnancy , SARS-CoV-2 , Hydroxylamines , Antiviral Agents/adverse effects
7.
Viruses ; 14(10)2022 10 14.
Article in English | MEDLINE | ID: covidwho-2071837

ABSTRACT

Ficus rubiginosa plant extract showed antimicrobial activity, but no evidence concerning its antiviral properties was reported. The antiviral activity of the methanolic extract (MeOH) and its n-hexane (H) and ethyl acetate (EA) fractions against Herpes simplex virus-1 (HSV-1), Human coronavirus (HCoV) -229E, and Poliovirus-1 (PV-1) was investigated in the different phases of viral infection in the VERO CCL-81 cell line. To confirm the antiviral efficacy, a qPCR was conducted. The recorded cytotoxic concentration 50% was 513.1, 298.6, and 56.45 µg/mL for MeOH, H, and EA, respectively, assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay after 72 h of treatment. The Ficus rubiginosa leaf extract inhibited the replication of HSV-1 in the early stages of infection, showing a complete inhibition up to 0.62, 0.31, and 1.25 µg/mL. Against HCoV-229E, a total inhibition up to 1.25 µg/mL for MeOH and H as well as 5 µg/mL for EA was observed. Otherwise, no activity was recorded against PV-1. The leaf extract could act directly on the viral envelope, destructuring the lipid membrane and/or directly blocking the enriched proteins on the viral surface. The verified gene inhibition suggested that the treatments with M, H, and EA impaired HSV-1 and HCoV-229E replication, with a greater antiviral efficiency against HSV-1 compared to HCoV-229E, possibly due to a greater affinity of Ficus rubiginosa towards membrane glycoproteins and/or the different lipid envelopes.


Subject(s)
Coronavirus 229E, Human , Ficus , Herpesvirus 1, Human , Poliovirus , Humans , Antiviral Agents/pharmacology , Bromides , Plant Extracts/pharmacology , Membrane Glycoproteins , Lipids
8.
Viruses ; 14(10)2022 09 22.
Article in English | MEDLINE | ID: covidwho-2043986

ABSTRACT

The continuous and rapid spread of the COVID-19 pandemic has emphasized the need to seek new therapeutic and prophylactic treatments. Peptide inhibitors are a valid alternative approach for the treatment of emerging viral infections, mainly due to their low toxicity and high efficiency. Recently, two small nucleotide signatures were identified in the genome of some members of the Coronaviridae family and many other human pathogens. In this study, we investigated whether the corresponding amino acid sequences of such nucleotide sequences could have effects on the viral infection of two representative human coronaviruses: HCoV-OC43 and SARS-CoV-2. Our results showed that the synthetic peptides analyzed inhibit the infection of both coronaviruses in a dose-dependent manner by binding the RBD of the Spike protein, as suggested by molecular docking and validated by biochemical studies. The peptides tested do not provide toxicity on cultured cells or human erythrocytes and are resistant to human serum proteases, indicating that they may be very promising antiviral peptides.


Subject(s)
COVID-19 Drug Treatment , Humans , SARS-CoV-2 , Pandemics , Spike Glycoprotein, Coronavirus/metabolism , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Peptides/pharmacology , Peptide Hydrolases , Nucleotides
9.
J Med Virol ; 94(11): 5567-5573, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1925955

ABSTRACT

In December 2019, several patients were hospitalized and diagnosed with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which subsequently led to a global pandemic. To date, there are no studies evaluating the relationship between the respiratory phageome and the SARS-CoV-2 infection. The current study investigated the phageome profiles in the nasopharyngeal swabs collected from 55 patients during the three different waves of coronavirus disease 2019 (COVID-19) in the Campania Region (Southern Italy). Data obtained from the taxonomic profiling show that phage families belonging to the order Caudovirales have a high abundance in the patient samples. Moreover, the severity of the COVID-19 infection seems to be correlated with the phage abundance.


Subject(s)
COVID-19 , Humans , Pandemics , SARS-CoV-2 , Severity of Illness Index , Virome
10.
Vaccines (Basel) ; 10(4)2022 Mar 29.
Article in English | MEDLINE | ID: covidwho-1822471

ABSTRACT

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, has caused over 460 million cases of infection and over 6 million deaths worldwide. The pandemic has called for science, technology, and innovation to provide solutions and, due to an incredible scientific and financial global effort, several prophylactic and therapeutic apparatuses such as monoclonal antibodies and vaccines were developed in less than one year to address this emergency. After SARS-CoV-2 infection, serum neutralizing antibodies are produced by B cells and studies on virus-neutralizing antibodies' kinetics are pivotal. The process of protective immunity and the duration of this kind of protection against COVID-19 remain to be clarified. We tested 136 sera from 3 groups of individuals, some of them providing multiple sequential sera (1-healthy, no previous CoV2-infected, vaccinated; 2-healthy, previous CoV2 infected, vaccinated; 3-healed, previous CoV2-infected, not vaccinated) to assess the kinetics of antibodies (Abs) neutralizing activity. We found that SARS-CoV-2 infection elicits moderate neutralizing antibody activity in most individuals; neither age nor gender appear to have any influence on Abs responses. The BNT162b2 vaccine, when administered in two doses, induces high antibodies titre endowed with potent neutralizing activity against bare SARS-CoV-2 in in vitro neutralizing assay. The residual neutralization capability and the kinetic of waning immunity were also evaluated over 9 months after the second dose in a reference group of subjects. Neutralization titre showed a decline in all subjects and the median level of S-protein IgG, over 270 days after the second vaccination dose, was below 10 AU/mL in 53% of serum tested.

11.
Mult Scler Relat Disord ; 60: 103724, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1783662

ABSTRACT

INTRODUCTION: Real-world clinical data suggest an attenuated short-term humoral response to SARS-CoV-2 vaccines in patients with multiple sclerosis (pwMS) receiving high efficacy (HE) disease modifying therapies (DMTs) such as Ocrelizumab (OCR) and Fingolimod (FNG). Long-term humoral response in pwMS treated with these HE-DMTs has been poorly investigated. The aim of our study was to explore: i) the humoral response up to six months after a full cycle of the BNT162b2 mRNA Covid-19 vaccine in pwMS treated with OCR and FNG and to compare it to age- and sex-matched healthy controls (HCs); ii) the relationship between humoral response and clinical and immunological characteristics of the studied population. METHODS: Serum samples were collected from HCs and pwMS treated with OCR or FNG at the following time points: before BNT162b2 mRNA Covid-19 vaccine (T0), and 4 (T1), 8 (T2), 16 (T3) and 24 (T4) weeks after the first dose. Sera were stored at -20 °C and tested for the quantitative detection of IgG antibodies to SARS-CoV-2 trimeric spike protein (Anti-TSP IgG) expressed in binding antibody units (BAU). At T1 neutralizing antibodies (NAbs) titres were assessed. The relationship between Anti-TSP IgG at each time-point and clinical and laboratoristic analyses were analysed by the Spearman correlation coefficient. RESULTS: 47 HCs and 50 pwMS (28 on OCR and 22 on FNG) were included in the study. All HCs mounted a positive humoral response at T1 and preserved it up to six months. At T1 only 57.1% pwMS on OCR (p < 0.001 compared with HCs) and 40.9% on FNG (p < 0.001) had a positive humoral response at T1, with only 39.3% and 27.3% maintaining a positive response at sixth months (T4), respectively. A strong positive correlation was observed between Nabs titres and Anti-TSP IgG at T1 (rho 0.87, p < 0.0001) with NAbs titres significantly higher in HCs compared with pwMS on OCR and FNG (p<0.0001). We also found a strong positive correlation between time-window since last OCR infusion and anti-TSP IgG titres at all time-points (T1 rho=0.58, p = 0.001; T2 rho=0.59, p = 0.001; T3 rho=0.53, p = 0.004; T4 rho=0.47, p = 0.01). In the FNG group we observed a significant correlation between the humoral response measured from T1 to T4 and: i) treatment duration (T1: rho -0.65, p = 0.001; T2: rho -0.8 p< 0.001; T3: rho -0.72, p=<0.001; T4: rho -0.67, p<0.001), ii) disease duration (T1: rho -0.5, p = 0.017; T2: rho -0.6, p = 0.003; T3: rho -0.58, p = 0.005; T4: rho -0.57, p = 0.006), and iii) baseline total lymphocyte count (T1: rho 0.37, p = 0.08; T2: rho 0.45, p = 0.03; T3: rho 0.43, p = 0.04; T4: rho 0.45, p = 0.03). CONCLUSIONS: Our long-term data show a weakened and short-lasting humoral response to SARS-CoV-2 mRNA vaccine in pwMS treated with OCR and FNG when compared with HCs. MS neurologists should take into account the time elapsed since the last infusion for pwMS on OCR, and the lymphocyte count as well as the disease and treatment duration for those on FNG when called to counsel such pwMS regarding the vaccination with the SARS-CoV-2 mRNA vaccine.


Subject(s)
COVID-19 , Multiple Sclerosis , Antibodies, Monoclonal, Humanized , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Fingolimod Hydrochloride/therapeutic use , Humans , Immunoglobulin G/therapeutic use , Multiple Sclerosis/drug therapy , RNA, Messenger , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
12.
Sci Rep ; 12(1): 5468, 2022 03 31.
Article in English | MEDLINE | ID: covidwho-1768860

ABSTRACT

This study investigated the performance of 24 commercial disinfectants present on the market during last year according to the manufacturer's instructions. Recently, national and international organizations of public health performed studies on disinfection products due to the increasing awareness of the potential and growing risks on human health, such as skin damage and reactions in the mucosal lining, especially for the healthcare workers in their frequent daily use. However, there are many limitations in the common cleaning/disinfection products on market as in the selection of effective disinfectants to decontaminate inanimate surfaces. We analyzed the disinfection power of hydrogen peroxide, quaternary ammonium compounds, alcohols, phenols and aldehydes used as active principles according to international guidelines. The antimicrobial properties were assessed by broth microdilution, and antibiofilm properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus); their virucidal efficacy was tested against Herpes simplex virus type 1 (HSV-1) and Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The quaternary ammonium compounds demonstrated better efficacy than others and in some cases ready to use products had also virucidal and antimicrobial activities after dilution at 0.125%. The scientific evidence indicates that many commercial products are used at high concentrations and high doses and this could have deleterious effects both on human health and the environment. A lower concentration of active ingredients would avoid the excessive release of chemicals into the environment and improve skin tolerance, ensuring the health and safety protection of workers, including the healthcare operators at their workplace.


Subject(s)
COVID-19 , Disinfectants , COVID-19/prevention & control , Disinfectants/pharmacology , Escherichia coli , Humans , Pandemics/prevention & control , SARS-CoV-2 , Staphylococcus aureus , Workplace
13.
Microb Pathog ; 165: 105506, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1763898

ABSTRACT

Since its first appearance, the SARS-CoV-2 has spread rapidly in the human population, reaching the pandemic scale with >280 million confirmed infections and more than 5 million deaths to date (https://covid19.who.int/). These data justify the urgent need to enhance our understanding of SARS-CoV-2 effects in the respiratory system, including those linked to co-infections. The principal aim of our study is to investigate existing correlations in the nasopharynx between the bacterial community, potential pathogens, and SARS-CoV-2 infection. The main aim of this study was to provide evidence pointing to possible relationships between components of the bacterial community and SARS-CoV-2 in the nasopharynx. Meta-transcriptomic profiling of the nasopharyngeal microbial community was carried out in 89 SARS-Cov-2 positive subjects from the Campania Region in Italy. To this end, RNA extracted from nasopharyngeal swabs collected at different times during the initial phases of the pandemic was analyzed by Next-Generation Sequencing (NGS). Results show a consistently high presence of members of the Proteobacteria (41.85%), Firmicutes (28.54%), and Actinobacteria (16.10%) phyla, and an inverted correlation between the host microbiome, co-infectious bacteria, and super-potential pathogens such as Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Neisseria gonorrhoeae. In depth characterization of microbiota composition in the nasopharynx can provide clues to understand its potential contribution to the clinical phenotype of Covid-19, clarifying the interaction between SARS-Cov-2 and the bacterial flora of the host, and highlighting its dysbiosis and the presence of pathogens that could affect the patient's disease progression and outcome.


Subject(s)
COVID-19 , Coinfection , Microbiota , Bacteria/genetics , Coinfection/epidemiology , High-Throughput Nucleotide Sequencing , Humans , Italy/epidemiology , Microbiota/genetics , Nasopharynx/microbiology , Pandemics , SARS-CoV-2/genetics
14.
Vaccines (Basel) ; 10(3)2022 Feb 27.
Article in English | MEDLINE | ID: covidwho-1715834

ABSTRACT

Vaccination has been a key protective behavior for COVID-19. This study investigated the clinical status of university professors administered the Vaxzevria COVID-19 vaccine, to monitor for any adverse reaction, and to understand attitude and hesitancy to vaccination. Data were collected through an online survey. The study received approval from the relevant ethics committee "Comitato Etico Campania Sud". Multivariate logistic regressions were used to calculate significant predictors of the outcomes of interest. A gender and AB0 blood type difference in adverse vaccine reactions was found. The multivariate logistic regression model showed that female gender, city residence, blood type A+ and B-, and chronic underlying medical conditions or comorbidities were more strongly implicated in the occurrence of adverse reactions, whereas blood type 0 Rh+ or blood type A Rh- were protective factors of adverse reactions to the Vaxzevria vaccine. Both genders did not show serious adverse reactions to the Vaxzevria vaccine. Based on our results, we are able to support the hypothesis that AB0 blood type and gender difference appear as predictors of Vaxzevria COVID-19 vaccine reactogenicity. Furthermore, in the study population, the degree of concern and hesitation to undergo vaccination was minimal.

15.
Int J Mol Sci ; 23(4)2022 Feb 13.
Article in English | MEDLINE | ID: covidwho-1686819

ABSTRACT

The COVID-19 pandemic has evidenced the urgent need for the discovery of broad-spectrum antiviral therapies that could be deployed in the case of future emergence of novel viral threats, as well as to back up current therapeutic options in the case of drug resistance development. Most current antivirals are directed to inhibit specific viruses since these therapeutic molecules are designed to act on a specific viral target with the objective of interfering with a precise step in the replication cycle. Therefore, antimicrobial peptides (AMPs) have been identified as promising antiviral agents that could help to overcome this limitation and provide compounds able to act on more than a single viral family. We evaluated the antiviral activity of an amphibian peptide known for its strong antimicrobial activity against both Gram-positive and Gram-negative bacteria, namely Temporin L (TL). Previous studies have revealed that TL is endowed with widespread antimicrobial activity and possesses marked haemolytic activity. Therefore, we analyzed TL and a previously identified TL derivative (Pro3, DLeu9 TL, where glutamine at position 3 is replaced with proline, and the D-Leucine enantiomer is present at position 9) as well as its analogs, for their activity against a wide panel of viruses comprising enveloped, naked, DNA and RNA viruses. We report significant inhibition activity against herpesviruses, paramyxoviruses, influenza virus and coronaviruses, including SARS-CoV-2. Moreover, we further modified our best candidate by lipidation and demonstrated a highly reduced cytotoxicity with improved antiviral effect. Our results show a potent and selective antiviral activity of TL peptides, indicating that the novel lipidated temporin-based antiviral agents could prove to be useful additions to current drugs in combatting rising drug resistance and epidemic/pandemic emergencies.


Subject(s)
Amphibian Proteins/pharmacology , Amphibians/metabolism , Antimicrobial Cationic Peptides/pharmacology , Antiviral Agents/chemistry , DNA Viruses/drug effects , RNA Viruses/drug effects , Amino Acid Sequence , Amphibian Proteins/chemistry , Amphibian Proteins/metabolism , Animals , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/metabolism , Antiviral Agents/pharmacology , Cell Survival/drug effects , Chlorocebus aethiops , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Lipids/chemistry , SARS-CoV-2/drug effects , Vero Cells
16.
Microorganisms ; 10(2)2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-1667249

ABSTRACT

The aim of the present study is to check the relationship between virus detection on the conjunctival swabs by RT-PCR and the systemic and ocular clinical data, treatments, and to the modalities of administration of supplemental oxygen. The SARS-CoV-2 RNA reverse-transcriptase PCR assay of conjunctival brushing samples and the corneal/conjunctival clinical findings were evaluated in 18 eyes of 9 consecutive patients admitted to the COVID-19 Sub-intensive Unit of Salerno Hospital University, Italy. Conjunctival swabs were positive for SARS-CoV-2 in 13 eyes of 7 patients; corneal epithelial defects were detected in 9 eyes. The seven patients with ocular involvement from SARS-CoV-2 had undergone treatment with a full-face mask or oxygen helmet in the last week, while the two subjects with negative conjunctival swabs had been treated with high flow nasal cannula. The positivity to the conjunctival test for SARS-CoV-2 was higher (72%) than that reported in the literature (10-15%) and related in all cases to the use of facial respiratory devices. These results suggest that exposure of unprotected eyes to aerosols containing high concentrations of SARS-CoV-2 could cause a keratoconjunctival viral infection. Further studies are needed to verify the causal link with the use of respiratory facial devices in patients suffering from COVID-19 pneumonia.

17.
Int J Mol Sci ; 23(2)2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1625084

ABSTRACT

Viral infections represent a serious threat to the world population and are becoming more frequent. The search and identification of broad-spectrum antiviral molecules is necessary to ensure new therapeutic options, since there is a limited availability of effective antiviral drugs able to eradicate viral infections, and consequently due to the increase of strains that are resistant to the most used drugs. Recently, several studies on antimicrobial peptides identified them as promising antiviral agents. In detail, amphibian skin secretions serve as a rich source of natural antimicrobial peptides. Their antibacterial and antifungal activities have been widely reported, but their exploitation as potential antiviral agents have yet to be fully investigated. In the present study, the antiviral activity of the peptide derived from the secretion of Rana tagoi, named AR-23, was evaluated against both DNA and RNA viruses, with or without envelope. Different assays were performed to identify in which step of the infectious cycle the peptide could act. AR-23 exhibited a greater inhibitory activity in the early stages of infection against both DNA (HSV-1) and RNA (MeV, HPIV-2, HCoV-229E, and SARS-CoV-2) enveloped viruses and, on the contrary, it was inactive against naked viruses (PV-1). Altogether, the results indicated AR-23 as a peptide with potential therapeutic effects against a wide variety of human viruses.


Subject(s)
Amphibian Proteins/pharmacology , Antimicrobial Peptides/pharmacology , Antiviral Agents/pharmacology , Ranidae/metabolism , Animals , Antimicrobial Cationic Peptides/pharmacology , Cell Survival/drug effects , Chlorocebus aethiops , DNA Viruses/drug effects , RNA Viruses/drug effects , SARS-CoV-2/drug effects , Vero Cells , Viral Envelope/drug effects , Viral Plaque Assay , Virus Diseases/drug therapy
18.
J Med Virol ; 94(5): 2275-2283, 2022 05.
Article in English | MEDLINE | ID: covidwho-1604831

ABSTRACT

From December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has spread rapidly, leading to a global pandemic. Little is known about possible relationships between SARS-CoV-2 and other viruses in the respiratory system affecting patient prognosis and outcomes. This study aims to characterize respiratory virome profiles in association with SARS-CoV-2 infection and disease severity, through the analysis in 89 nasopharyngeal swabs collected in a patient's cohort from the Campania region (Southern Italy). Results show coinfections with viral species belonging to Coronaviridae, Retroviridae, Herpesviridae, Poxviridae, Pneumoviridae, Pandoraviridae, and Anelloviridae families and only 2% of the cases (2/89) identified respiratory viruses.


Subject(s)
COVID-19 , Nasopharynx , COVID-19/epidemiology , COVID-19/therapy , COVID-19/virology , Humans , Italy/epidemiology , Nasopharynx/virology , Pandemics , SARS-CoV-2 , Virome
19.
Pharmaceutics ; 13(12)2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1554858

ABSTRACT

Emerging and re-emerging viruses represent a serious threat to human health at a global level. In particular, enveloped viruses are one of the main causes of viral outbreaks, as recently demonstrated by SARS-CoV-2. An effective strategy to counteract these viruses could be to target the envelope by using surface-active compounds. Rhamnolipids (RLs) are microbial biosurfactants displaying a wide range of bioactivities, such as antibacterial, antifungal and antibiofilm, among others. Being of microbial origin, they are environmentally-friendly, biodegradable, and less toxic than synthetic surfactants. In this work, we explored the antiviral activity of the rhamnolipids mixture (M15RL) produced by the Antarctic bacteria Pseudomonas gessardii M15 against viruses belonging to Coronaviridae and Herpesviridae families. In addition, we investigated the rhamnolipids' mode of action and the possibility of inactivating viruses on treated surfaces. Our results show complete inactivation of HSV-1 and HSV-2 by M15RLs at 6 µg/mL, and of HCoV-229E and SARS-CoV-2 at 25 and 50 µg/mL, respectively. Concerning activity against HCoV-OC43, 80% inhibition of cytopathic effect was recorded, while no activity against naked Poliovirus Type 1 (PV-1) was detectable, suggesting that the antiviral action is mainly directed towards the envelope. In conclusion, we report a significant activity of M15RL against enveloped viruses and demonstrated for the first time the antiviral effect of rhamnolipids against SARS-CoV-2.

20.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 08.
Article in English | MEDLINE | ID: covidwho-1512534

ABSTRACT

The rapid spread of SARS-CoV-2 and the resulting pandemic has led to a spasmodic search for approaches able to limit the diffusion of the disease. The epigenetic machinery has aroused considerable interest in the last decades, and much evidence has demonstrated that this type of modification could regulate the early stages of viral infection. Recently it was reported that N6-methyladenosine (m6A) influences SARS-CoV-2 replication, although its role remains to be further investigated. The knockdown of enzymes involved in the m6A pathway could represent an optimal strategy to deepen the epigenetic mechanism. In the present study, we blocked the catalytic activity of the fat mass and obesity-associated protein (FTO) by using the selective inhibitor rhein. We observed a strong broad-spectrum reduction of infectivity caused by various coronaviruses, including SARS-CoV-2. This effect could be due to the modulation of m6A levels and could allow identification of this modification as a new therapeutic target to treat SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL